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The numerical procedure of Marchand and a zero searching routine are applied to 

the study of the zero trajectories of the complex transcendental equation 

where #J(W) belongs to a class of fourth degree polynomials. Such dispersion reiations 
arise in the context of the Friedricbs model and their solution is important for theories 
of unstable states. 

1. INTRODUCTION 

The Friedrichs model [l, 21 consists of an unperturbed Hamiltonian with an 
absolutly continuous spectrum extending over some interval (a, b) of the real axis 
and a point eigenvalue CC)~ embedded in it. There is a perturbation AV, X being a 
real parameter coupling the point eigenvalue to the contirmum. 

For our purpose it is sufficient to notice [3] that the possible point eigenvahtes of 
this Hamiltonian are given by the zeros of a function of the form 

T)(z) = cog - z - A2 s 
b do (b(w) 
a W-Z’ 

where 

$@I = MJ) = 0, 

5&w> > 0 (a < w < b). 
(n .2) 

This function $z) is analytic in the complex plane except for a cut along (k~, QS 
epending on h2 it may have none, one or two (real) zeros. Pn fact if 

AI2 = mm [(q - a)[/’ C&J a]-‘, (n.3a) 
a o-u 
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and 

xi1 = max [(co,, - a)[jab dw *L]-l, (w,, - h)[jb A s]-1/, 
w-a (1.3b) 

a 

then for 

point eigenvalue(s). 

Note that because of (2) the eigenvalues of H, if any, lie outside the interval (a, b). 
According to the previous remarks the eigenvalue wO of H “disappears” because 

of the perturbation, provided that h2 is sufficiently small. However, a trace of this 
eigenvalue may be found as a zero of the analytic continuation of q(z). The knowl- 
edge of the behavior of these zeros is important in theories of unstable states 
[4, 10, 111. If $N z is analytic in some region near the cut the analytic continuation > 
of q(z) crossing the cut from above (below) is given by 

q*(z) = wo - 2 - x2 s 
’ dw $ + 2nSr$(z). 
a (1.4) 

As the interval (a, b) is finite we may write q(z) in the form 

T(Z) = wg - z - A2 s b &,, d(O) - hz) 
W-Z a 

and the question of analytic continuation reduces to that of the choice of the correct 
branch for the logarithm. 

We remark that for a given wO the two critical values from (3), h,2 and XfI , are as 
a rule different, but a specific c$, can always be found so these two values coalesce. 
From h12 = A;1 = XD2 and making 

a(x) = j”dw-$$, 
a 

we have 

cij 

0 
= b - a4W-(4 

1 - @)/cd(a) ’ (1.6) 
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where 
u(w) = -#w)[(w - a)(w - b)]-B 

As a(b)/+) is essentially a negative quantity, a < W, < b. 
Considering now the two principal branches of $2) which we obtain by analytic 

continuation we notice it is sufficient to study the roots of one of them. From the 
principle of reflection it follows that q+(z) = 7-(Z) = 8 and this leads to symmet- 
rical solutions in relation to the real axis. 

We expect analyticity in X for the roots of q(z) as functions of this parameter so 
they should generate a set of trajectories on the complex 2 plane. How many 
trajectories exist is dependent on determining the number of roots present for 
each X2. To find the precise number of roots of an equation on the complex plane 
is an involved process. One has to depend on the explicit rise of Cauchy’s theorem 
and work through numerical contour integrations [5, 61. Still in QW problem 
could limit the number of trajectories which possibly exist. Two of them attain 
cut end-points for the two critical values of X2. Another originates at the point 0~~ 
which is a solution of the uncoupled equation. Other trajectories will be associated 
with singular points of the density function. 6(z). It is of course possible for a single 
curve to pass through several of these points; for instance, the trajectory coming 
from w0 can connect with one of the cut end-points. 

In this paper we will present some results, mainly numerical, concerning the 
roots of T+(Z) where for $(w) we take a quartic ~oly~orn~al~ the interval of integra- 
tion being (0, 1). 

2. Two NUMERICAL METHODS 

One possible way to deal with an equation of the type we consider is to separate 
it into real and imaginary parts and study the equivalent system of equations. 
Namely 

t 
Re VG, Y, h2, WJ = Q, 
Im 7+(x, y, h2) = 0. 

(2.1) 

Each equation represents a family of curves in the xy lane parametrized by P, CCD~ 
being fixed. The intersections of these curves which correspond to common values 
of X2 are then the solutions of the system. Such a type of approach was suggested by 
Marchand [41/. 

5W15/3-6 
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A computer program was employed to generate plots of the intersections with 
the plane x = y = 0 of the three-dimensional surfaces from (1). To X2 a set of 
values was attributed. Contour plotting routines have recently been used with 
satisfactory results in problems of a similar type [7, 81. This technique affords 
reasonable precision when compared to iterative procedures. We have also the 
convenience of showing the behavior of the two parts of the dispersion relation 
versus the coupling constant. As the equation for the imaginary part is independent 
of w0 , the problem is simpler and we obtain immediately a representation foi the 
%isolines. However, this method tends to be slow in the computer and a more 
efficient one was envisaged. 

Numerical computation was done directly in complex arithmetic and an adequate 
form of Muller’s iteration [9] served as a zero searching routine. The program is an 
elaboration of MULROOT from the CDC VIM Program Library and was written 
in FORTRAN. We worked in terms of an imposed bound on the modulus of 
q+(z) below which z is assumed to be a zero, local deflation being then done 
throughout. Solutions found for a given value of X2 were then reused as starting 
values in the next iteration. In the CDC 6400 computer we used, for a given 
density function, a specific value of w0 and a large enough number of X2 values so 
as to get sufficient definition for plotting, results were obtained in time of order 
30 sec. With the first method this number increased by a factor of ten, being 
exclusive of off-line plot time. 

3. A SAMPLE CASE: A CLASS OF QUARTIC POLYNOMIALS AS DENSITY FUNCTIONS 

3.1. Theform of $(w) 

We were interested in studying a case where the function 4(w) should possess 
some generality. Initially, polynomials were chosen so that the integration in v(z) 
could always be carried out explicitly. The degree of those polynomials was fixed 
attending to the requirement of obtaining (by a change in their coefficients) func- 
tions that in the interval in consideration should either be symmetric in relation to 
an axis or not, have more than one maximum or not and eventually vanish at an 
interior point. Essentially, the members of the class should be identified by a para- 
meter varying in a given range so that a small change in the form of #(w) could be 
obtained in a continuous way. 

When polynomials of degree four are taken, and the interval of integration (a, b) 
is chosen to be (0, l), conditions (1.2) lead to the following type of density func- 
tions, 

r&o) = --o(w - 1) C(wz - 2Fw + P + P), (3.1) 

with C a positive constant and 0 < F < (F + B)li2. There is always an extremum 
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for CL1 = (.m’” + B2)1/2. Keeping this quantity fixe the Qcc~rrence of other s 
of statiQ~arity depends simply on F, a form factor r e+(w). To attribute (di” + 2 
equally distant values from the interval end-points lea s to symmetrical results in 
relation to the axis x = +. Computation was performed for (I? + 
situation from which the behavior for other values of this constant 
inferred. 

It is convenient, and is without loss of generality, to impose a con 
that with U(W) defined by (1.8) we have 

which leads to e = (P2 + B2 - F + &)-I. From (1.7) we get then AD2 = I. This is 
simply done to scale the range of A2 for the different density functions. aking ADS 
equal to unity ensures that the two critical X2 also quantities of this order. 

3.2. The roots of -q”(z) 

From the general form of q(z) and (1) we write 

y(z) = two - z + A2 
s 

l dw w(w - 1) C(d - 2Fm -+ F’ + B2) 

0 O-Z 

9)(z) = wg - z + A2 
i 

l c&J 
Pp4 + Prp2 + P&J2 + P,w 

)i 
0 W-Z 

with 
PI = c, 

This yields 

P, = -C(2F$- I), 

P, = C(2F + F2 $ B2), 

P4 = -C(F2 + By. 

d4 = wo - z + A2 [Q 
z-1 

+ (PI24 + P,z3 + P,z2 i P4z) log 7 
i, 1 

where 

(3.3) 

(3.5) 

(3.6) 
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FIG. 1. Quartic density functions of the form 4(w) = - w(w - 1) C (w” - 2Fw + F2 + P) 
with (F2 + Bz)1/2 = 213 and C = (719 - F)-I, lettering scheme defined for the set of increasing 
values of F = 0, 5/18, (41/G - 1)/l& 33154, 2/3. 
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FIG. 2. i%rO trajectories of ~+(z, wO, Aa) with function A, F = 0, -l/6 < w. < 716, w,, = b& . 
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FIG. 3. Zero trajectories of v+(z, wO, x2) with function C, F = (4 46 - l)/la, -- 116 < wO < T/Q: 
wg = WY*. 
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FIG. 4. Zero trajectories of v+(z, CO,,, AZ) with function E, P = 213, -l/S < w. < 716, OJ@ = *W$. 
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After (1.5) we indicate how T+(Z) is obtained from q(z) by a change in the position 
of the cut. The argument of the logarithm was chosen accordingly in the expression 
above, namely in the interval (r, 2n), and this was then the form used for effecting 
numerical calculations. 

For a series of values of F producing the functions depictured in Fig. 1, plots of 
the respective zero trajectories were obtained for various choices of the point q, . 
Fig. 2-4 give the trajectories found for some of these density functions. 

There are two trajectories, each of which attains an interval end-point for the 
two critical values of P. In general it can be said that if q, is sufficiently near to 
0 or 1 the curve starting there passes through one of these points. A third one 
converges with increasing X2 to the respective solution of Em,+, @(z, h2) = 0, 
which exists for the class of functions considered. The curve generated by this 
solution with F as a parameter is given in Fig. 5. 

I- 

-.1 -- 

-.6-- 

FIG. 5. Zero trajectories of T+(z, wO , P) with functions A to E, w,, = W, . Broken line 
represents the trajectory of ~+(z, oO , AZ) when A2 + co, parameter F. 

The set of the possible functions $(a) falls into two distinct groups depending 
on whether there are one or two maxima in the interval (0, 1). We have examined 
the case of the limiting curve which lies between the two groups and has a single 
maximum and a point of inflexion, F = (4 ~‘6 - 1)/l 8. These are the results shown 
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in Fig. 3. The trajectories approach a symmetrical disposition but nothing excep- 
tional occurs. 

in the two extreme cases we study, for values of F equal to 0 and 8, ~~~~~~a~ 
situations arise. For f; = 0 no matter which value is taken for o,, the trajectory that 
originates there passes through one of the cut end-points. This behavior is sim 
than that displayed in the more general case. For P = 3 and if wO < 8 one of them 
always attains the real axis at x = 8, a point where the corres~~~di~g function $(z) 
also vanishes. From (1.4) this can easily be verified. 

- 5OOC 

J%+. 6. Real and imaginary parts of ~+(z, w,, , h”) = 0: solid and broken lines respectively, 
for function A, F = 0, and wg = Cv, . Solutions occur at the intersections of the cuwes f~or the 
same value of A”. 

Figure S resumes the results when wO is kept fixed and the function 
We show in Fig. 6 an example of the computer plots we obtained when the first 
method described is used. 
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4. CONCLUDING REMARKS 

It can be said that three trajectories exist for each of the density functions 
considered. The one coming from o0 either goes to one of the interval end-points 
or not, depending on the value of w0 . If not it converges to the respective solution 
of limAa,, r+(z, A”) = 0. 

We are aware that the study made here with quartic functions presents little 
generality from the point of view of which type of solutions could be expected for 
nonpolynomial or even polynomial density functions. To compare with the qua- 
dratic case [12], the situation differs in an important aspect from the present one. 
There, a trajectory from w,, always attains a cut end-point along a continuous 
curve. This evidently relates to the absence of solutions for the equation we get 
from lim,++, r+(z, AZ) = 0, a condition which does not hold in general. 

The method we used can without undue complication be applied to other 
problems. So far d(w) is such that the Cauchy integral can be performed explicitly 
this is a convenient simplification. Otherwise, we have to resort to the expression 
given by (1.5) and proceed by numerical quadrature, having then also to study the 
stability of the solutions in relation to the approximation made for the integral. 

Some few properties of the zeros can also be inferred by analytic methods, and 
this will be the object of a forthcoming publication. 
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